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Where do dispersion curves end? A basic question in theory of excitable media
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We use our recent exactly solvable model of excitable media with nondiffusive control kinetics to study
periodic wave trains in an excitable medium. We explicitly find restitution and dispersion curves for such a
medium that are protocol independent. We also introduce an approximate stability criterion for periodic waves,
which is based on the solitary pulse stability. Using our analytical periodic solutions as the initial conditions in
our numerical experiments we demonstrate that this criterion indeed determines the minimal wavelength and
propagation velocity below which both a solitary pulse and a periodic wave train quickly die.
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Different processes in a distributed nonlinear system g
erally occur on different space and time scales. Determin
such scales is a fundamental step in understanding key
nomena in any nonlinear medium. In hydrodynamics a
traditional nonlinear wave theory this fact has long bee
matter of full consensus. Spatiotemporal scales alw
emerge in analysis of pattern formation, stability, and evo
tion of reaction diffusion~RD! systems@1–7#. Spatial and
temporal scales (L,t) of a wave process in one dimensio
are incorporated in the dispersion curvec5c(k), wherec is
the wave velocity andk is the wave number. Each poin
(c,k) of such a curve and its slopedc/dk determine a (L,t)
pair @for example asL52p/k, or L5(1/c)(dc/dk), andt
5L/c#. Of particular interest are such characteristic points
the dispersion curve as its extrema, inflection and end po
since they can often be thought of as representative scale
some particular processes. Unfortunately, classical meth
of singular perturbation theory@1,2# for RD systems do no
allow uniform estimates that are valid in the most interest
region of small velocities. In this Rapid Communication w
use our exactly solvable model@8# of excitable media to
introduce a general ‘‘recipe’’ for finding the ‘‘slow’’ end
point on the dispersion curve, which is key for determini
the fate of the RD waves. The end point of the dispers
curve determines the fundamental length and time scale
troduced in Refs.@6#, which are crucial for our understandin
of various phenomena in excitable media.

We will consider a set of RDEs of the form@8#
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where«.0 is the dimensionless relaxation rate for the slo
variablev which has a meaning of an excitation thresho
potential, z.0 is the u-v coupling constant, the constan
v r.0 is the ground~resting! statev value that determines
the depth of the minima ofv(j), and l.0 is the resting
state conductivity~see Ref.@8#!. We will seek a steadily
propagating periodic wave train with velocityc, sou andv
depend only on the variablej5x2ct, and so Eqs.~1! and
~2!, respectively, become

u9~j!1cu8~j!5 i ~u,v !, ~3!

v8~j!2dv52d@zu1v r # ~d[«/c!. ~4!

On one period fromj52Lh to j5L f ~see Fig. 1! the piece-
wise equation~3! has a solution of the form

FIG. 1. Snapshot of a periodic traveling wave trainu5u(j) and v
5v(j) for c50.5 atl50.2, z51.25,«50.03,v r50.3. The values ofL f ,
Lh , and L5L f1Lh and uf[u(0)5v f[v(0), and uh[u(2Lh)5vh

[v(2Lh) are marked.
R4108 © 1998 The American Physical Society
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u5H 12Mek2j2Nek28~j1Lh!, 2Lh<j<0

Aek1j1Bek18~j2L f !, 0<j<L f ,
~5!

where the lengthsLh ,L f are introduced in Fig. 1 andk1

,0 and k18.0 are solutions of the characteristic equati
k21ck2l50, while k2.0 andk28,0 are the roots of the
characteristic equationk21ck2150. The first line in Eq.
~5! represents the wave’s head~top!, the second its front and
back. Using Eq.~5! one can findv(j) from Eq. ~4! as

v5v r1H z1M 8ek2j1N8ek28~j1Lh!2Pedj, 2Lh<j<0

2A8ek1j2B8ek18~j2L f !1Qedj, 0<j<L f ,
~6!

whereP,Q are integration constants andM 8,N8,A8,B8 are
expressed throughM ,N,A,B as follows: M 85Mzd/(k2

2d), N85Nzd/(k282d), A85Azd/(k12d), B85Bzd/(k18
2d). Given the propagation speedc, the entire solution
„u(j),v(j)… incorporates eight unknown parameters, the
integration constantsA,B,M ,N,P,Q, and two lengthsL f
and Lh . The functionsu and v must satisfy six continuity
and periodicity conditions u(10)5u(20), u8(10)
5u8(20) and v(10)5v(20), and u(2Lh)5u(L f),
u8(2Lh)5u8(L f) and v(2Lh)5v(L f). Two more equa-
tions are the excitation and deexcitation conditionsu(0)
5v(0) andu(2Lh)5v(2Lh), respectively, which immedi-
ately follow from our definition ofi (u,v) in Eq. ~1!. These
eight equations determine two dispersionlike dependen
L f5L f(c) andLh5Lh(c). Since the spatial periodL is the
wavelength, these dependences determine the dispersio
lation for the medium

L5L f~c!1Lh~c!. ~7!

In fact, the dependence of the head widthLh5Lh(c) repre-
sented via the time periodL/c describes restitution proper
ties of the medium, which can be more conventionally re
resented by plottingLh versusL f ~using c as a parameter!.
Both the dispersion and restitution curves areprotocol inde-
pendentand thus characteristic properties of the medium

The dispersion and restitution curves can be found a
lytically with the exponentially small errors~ESE! when« is
sufficiently small,«!l<1 ~the requirementl<1 is nonre-
strictive!. In the ESE approximation, the coefficien
M ,N,A,B in Eq. ~5! are simply related to the transition am
plitudesuf and uh ~Fig. 1! as A5uf , B5uh , M512uf ,
N512uh . Other constants are also readily found and
obtain

Lh~c!5
1

d
ln

z@Rf~c!2dSf~c!#1v r2uf~c!

z@Rh~c!2dSh~c!#1v r2uh~c!
, ~8!

L f~c!5
1

d
ln

uh~c!2v r1zSh~c!d

uf~c!2v r1zSf~c!d
, ~9!

where d5«/c, the transitional amplitudesuf and uh ~see
Fig. 1! are simple explicit functions ofc given in Ref.@8#,
Sf5uf(c)/@k1(c)2d#, Sh5uh(c)/@k18(c)2d# and
x
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Rf511dS 12uf~c!

k2~c!2d
1

uf~c!

k1~c!2d D , ~10!

Rh511dS 12uh~c!

k28~c!2d
1

uh~c!

k18~c!2d D . ~11!

One can readily check that errors in Eqs.~8! and ~9! are
indeed on the order of exp(2aLf) and exp(2bLh), wherea
and b are positive constants of the order of unity. Becau
the widthsLh andL f are of the order of 1/«, the errors are
o(«n) for any n.0 and the above equations are accur
within any power of«. The ESE approximation is thus exa
in terms of the parameter« and is the zero approximation i
terms of powers of the parameter«1[exp(21/«)5o(«n). It
is important that the ESE approximation holds even for v
degenerate waves with near minimum velocity.

The expressions~8!–~11! are explicit and analytical and
cannot be obtained in any other existing model. Solutions
different models with a piecewise linear source look simil
but the joining equations~smoothness, etc.! are extremely
complex in other models and have to be solved numerica
which renders such models actually numerical. For exam
in the model introduced by McKean@9# and studied in detail
by Rinzel and Keller@10# the coefficients analogous to ou
are found by~numerically! solving a set of very sophisticate
transcendental equations involving powers to the ratios
roots of a cubic equation, which makes analytical analy
virtually impossible.

Figure 2 depicts the dispersion and restitution proper
of the medium and illustrates the accuracy of Eqs.~8! and
~9!. Our explicit equations~8!–~11! also indicate that there
can exist additional~topologically disconnected! low veloc-
ity branches of such curves, which is an unexpected feat
For the parameter values used for the plots in Fig. 2 t
corresponds to the velocities well belowc,0.037 ~not
shown!. Despite multiple attempts neither these nor a
other points of the dispersion curve in the lower left corn
of the graph could be reached in our numerical simulatio
Solving numerically their linear stability equations Rinz
and Keller~Ref. @10#! found that the minimum speed neve
reaches the merging point of the upper and lower branche
the dispersion curve, the stably propagating waves ceas
exist at a higher speed: only a portion of the upper branch
the dispersion curve represents linearly stable solutions.
marginal~critical! velocity ccr can in principle be found via

FIG. 2. Theoretical and numerical dispersion and restitution curvesL
5L(c), Lh5Lh(c), andL f5L f(c).
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the linear stability analysis, which is fairly difficult in th
periodic case@10# particularly because the linearized pro
lem for perturbations is not self-adjoint and the correspo
ing eigenvalues are complex.

The existence of explicit analytical solutions for o
model allows us to suggest a simplified approach and for
late approximate stability conditions by extending those fo
solitary pulse to the periodic case. Each single wave of
infinite train actually propagates in incompletely recover
medium with the slow control variablev always staying far
away from its equilibrium valuev r . Our idea is to approxi-
mate a single pulse of the infinite wave train in such
incompletely recovered nonuniform medium by a solita
pulse in a uniform medium with appropriately redefin
threshold value. Then the known existence~stability! condi-
tions for the solitary pulse will produce the existence con
tions for the periodic wave train. It appears intuitively ev
dent that the periodic solutions do exist on the upper bra
at large wavelengths. We therefore only need to find
marginal case corresponding to the minimum velocity
stable propagation. With this aim in view let us compa
phase portraits of a periodic wave train and a solitary pu

FIG. 3. Phase portraits of the periodic wave trains on the (u,v) plane for
different c. The portions corresponding to heads of theu waves are shown
by solid lines, dashed lines corresponding to the region whereu,v. The
N-shaped bold line is the nullclinei (u,v)50, and the straight solid linev
5zu1v r is the nullcline for Eq.~2!.
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Figure 3 displays phase portraits on the (u,v) plane for pe-
riodic waves~5! and ~6! at four different points of the dis-
persion curveL5L(c). The curve corresponding toc51.1
describes a wave with very long recovery~interpulse! time
and is very close to a solitary pulse. Such curves start off
nullcline u50 at v'v r . Notice that the phase trajectorie
for lower propagation velocities never follow the nullclin
i (u,v)50 and therefore cannot be well approximated us
singular perturbation theory. Figure 4 displays phase p
traits of two solitary waves. The lower portions of the loo
situated to the left of the bold diagonal are straight lines a
correspond to the foot region. Since in the solitary pu
case @8# v(j)5v r1@zd/(d2k1)#ufexp(k1j) and u(j)
5ufexp(k1j) the equation of such a straight line isv5v r
1uzd/(d2k1) with the intercept beingv r . The maximum
value of the thresholdv r for which a solitary pulse solution
still exists determines the critical pulse velocityccr

@maxvr
sp(c)[vr

sp(ccr), ccr5ccr(«,z,l), where v r
sp(c) is

given by Eq.~17! and shown in Fig. 2 in Ref.@8##. In the
periodic case theu wave in the regionj.0 nearj50 can be
approximated by the same expression andv waves can be
written asv(j)'Q1v r1@zd/(d2k1)#ufexp(k1j), because
the second term in the second line in Eq.~6! is exponentially
small while the last term changes slowly and can be ‘‘fr

FIG. 4. Phase portraits of two solitary waves and the nullclines on
(u,v) plane~the corresponding wave configurations are shown in Fig. 1
Ref. @8#!.
FIG. 5. Dispersion curves for different values of the thresholdv r and fixed values of other parameters. Panel~b! is a blow up of the lower left corner
region in panel~a!. The quickly decaying,~subcritical! solutions are shown by dotted lines. Dash-dotted lines in panel~a! indicate the solitary pulse limit.
Curves 1 through 4 correspond tov r50.2, 0.3, 0.4, and 0.44, respectively.
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zen’’ at its valueQ corresponding toj50. This approxima-
tion is good because the ‘‘recovery’’ equation is of the fi
order and hence only thev value at j50 matters while
v8(0) is irrelevant. In the ESE approximation the constanQ
can be expressed asQ5v r

sp(c)2v r , which yields v(j)
5v r

sp(c)1@zd/(d2k1)#ufexp(k1j), and on the (u,v) phase
plane describes the straight line,

v5v r
sp~c!1uzd/~d2k1!, ~12!

with interceptv r
sp(c). This straight line is the extrapolatio

of the solid lines in Fig. 3 into the region left of the diagon
using a solitary pulse solution with the same initial con
tions atj50. As we showed in Ref.@8# the functionv r

sp(c)
has a maximum at a critical velocityccr @max$vr

sp(c)%
[vr

sp(ccr)# and therefore determines the marginally sta
propagation velocityccr5ccr(«,z,l) for the periodic wave
train in the medium under consideration. Our result appe
to be quite intuitive and general since propagation over
completely recovered medium is always slower@the upper
branch of the dispersion curvec5c(L) is monotonically
growing#. Thus the periodic wave train cannot exist in t
medium in which even a solitary pulse cannot propagate.
worth emphasizing again that Eq.~12! and the entire conclu
sion could be reached only due to the unique opportu
presented by the explicit expressions for all the constant
Eqs.~5! and ~6!.

FIG. 6. Decay lengthLdecayas a function of« for two values of theu-v
coupling constantz. The value ofLdecay is the distance that the wave pass
by the instant when the points of intersection betweenu(j) andv(j) merge
and the excited region in whichu(j).v(j) vanishes.
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Figure 5 displays a family of dispersion curves at fix
l,«,z and four different values ofv r . The solid and dotted
lines represent actual calculations~using the above theory!
for the velocities aboveccr . The ~horizontal! dash-dotted
line in panel~a! corresponds to the solitary pulse limit. Th
dotted-line portions of the dispersion curves correspond
unobservable wave trains with velocities below critical.
order to test our conclusion that the periodic waves co
sponding to the portions of the dispersion curve belowccr do
not propagate, we have performed a series of numerical
periments to measure the decay lengthLdecay in the subcriti-
cal velocity region. We computed periodic solutions of o
RD system~1! and ~2! in an excitable ring with circumfer-
enceL with the initial conditions given by our analytica
expressions~5! and ~6! for c5ccr . This wave configuration
evolves and propagates along the ring in a nonstation
manner: the excited region in whichu is suprathreshold (u
.v) becomes smaller and smaller and finally disappear
the instant when the wave has passed a distanceLdecay.
Figure 6 displaysLdecay/L versus« for two values ofz. One
can see that the excitation corresponding toc5ccr indeed
disappears very quickly, before it passes 2/5 of the wa
length. All our numerical experiments using the above mo
support the conclusion that the critical velocityccr ~the soli-
tary pulse marginal stability hypersurface! indeed accurately
defines the end point of the theoretical dispersion curve
reveals that the conditions for an excitation to decay
practically identical for both a solitary pulse and a period
wave-train solution~Fig. 5!. In other words, the minima
solitary pulse velocityccr determines an absolute lowe
boundary for the velocity of a periodic excitation wave wi
any period, finite or infinite.

In summary, the steadily propagating wave train in o
model can be explicitly written on the entire period in
broad parameter range. The integration constants can
found from a set of transcendental equations, which can
compactly solved within any power of the smallness para
eter«. The method allows us to define the restitution curve
a protocol independent way. We have found a simple ‘‘ru
of thumb’’ for the critical propagation velocityccr for peri-
odic excitation waves, which determines the left boundary
the existence-stability region on the dispersion and rest
tion curves. This is important since all nontrivial nonstatio
ary scenarios must evolve exclusively near this boundary
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