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Where do dispersion curves end? A basic question in theory of excitable media
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We use our recent exactly solvable model of excitable media with nondiffusive control kinetics to study
periodic wave trains in an excitable medium. We explicitly find restitution and dispersion curves for such a
medium that are protocol independent. We also introduce an approximate stability criterion for periodic waves,
which is based on the solitary pulse stability. Using our analytical periodic solutions as the initial conditions in
our numerical experiments we demonstrate that this criterion indeed determines the minimal wavelength and
propagation velocity below which both a solitary pulse and a periodic wave train quickly die.
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Different processes in a distributed nonlinear system gerwheree >0 is the dimensionless relaxation rate for the slow
erally occur on different space and time scales. Determiningariablev which has a meaning of an excitation threshold
such scales is a fundamental step in understanding key phpetential, >0 is the u-v coupling constant, the constant
nomena in any nonlinear medium. In hydrodynamics and),>0 is the groundresting statev value that determines
traditional nonlinear wave theory this fact has long been ahe depth of the minima o (&), and\A>0 is the resting
matter of full consensus. Spatiotemporal scales alwaystate conductivity(see Ref.[8]). We will seek a steadily
emerge in analysis of pattern formation, stability, and evolupropagating periodic wave train with velocity sou andv
tion of reaction diffusion(RD) systems[1-7]. Spatial and depend only on the variablé=x—ct, and so Egs(1) and
temporal scalesl(,7) of a wave process in one dimension (2), respectively, become
are incorporated in the dispersion curve c(k), wherec is
the wave velocity ank is the wave number. Each point " ey —i
(c,k) of such a curve and its slomke/dk determine al(, 7) W& +eu(§)=iu), &
pair [for example ad. =27/k, or L=(1/c)(dc/dk), and 7
=L/c]. Of particular interest are such characteristic points of v'(§)—dv=—d{utv,] (é=elc). (4)
the dispersion curve as its extrema, inflection and end points,
since they can often be thought of as representative scales fgj, one period frong=— L, to é&=L; (see Fig. 1the piece-
some particular processes. Unfortunately, classical methodgise equatior(3) has a solution of the form
of singular perturbation theor,2] for RD systems do not

allow uniform estimates that are valid in the most interesting ]

region of small velocities. In this Rapid Communication we
use our exactly solvable modé8] of excitable media to N
introduce a general “recipe” for finding the “slow” end 3
point on the dispersion curve, which is key for determining §
the fate of the RD waves. The end point of the dispersion =
curve determines the fundamental length and time scales in- §
troduced in Refd.6], which are crucial for our understanding Q
of various phenomena in excitable media. s
We will consider a set of RDEs of the forf8] ol
au ¢ AU, if u<wv -L L0 L L L+,
E-mz—i(u,v)f— u—1, if u=v, (1) Wave phase, £
FIG. 1. Snapshot of a periodic traveling wave trairru(¢) and v
v =p(&) for c=0.5 atA=0.2,{=1.25,£=0.03,v,=0.3. The values ok;,
—=g[fu+v,—v], (£>0), 2) Ly, and L=L¢+L, and u;=u(0)=v;=v(0), and u,=u(—Ly)=vy
oat =vy(—L;,) are marked.
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1-Melef—Neeltrtn),  —Ly=¢<0 o8

= K k/ L (5) (&) 0.7
Akt +Bealémto, OsésLy, o
S
where the lengthd , ,L; are introduced in Fig. 1 an#; go.s
<0 andk;>0 are solutions of the characteristic equation 204
k?+ck—X=0, while k,>0 andk;<0 are the roots of the 303
characteristic equatiok®+ck—1=0. The first line in Eq. éo.z
(5) represents the wave's heédp), the second its front and 3 04 1203, V=02 (=12 62002
back. Using Eq(5) one can findv (¢) from Eq. (4) as ' 3 V=02, L=12, €0
, % 20 40 60
(M N ehelétn) —pedt  —Ly<¢é<0 Dimensionless length
vl —Alekié— B'eki(ffl-f)_,_ Qeﬁf, O=é<L;, FIG. 2. Theoretical and numerical dispersion and restitution cutves,
(6) =L(c), Lh=Ly(c), andL;=L¢(c).

whereP,Q are integration constants and’,N’ A’ B’ are R—1+s 1-ug(c) N us(c) (10
expressed througiM,N,A,B as follows: M’'=M{Z6/ (K, = ko(c)—6  Kky(c)—46)’
—9), N'=N¢68l(ky—8), A'=A¢8I(ki— ), B'=BZdl(ky
— ). Given the propagation speer] the entire solution R—1+5 1-uy(c)  uy(c)
(u(é),v(&)) incorporates eight unknown parameters, the six h=1+ kj(c)— 5+ ki(c)— &) (12)

integration constant®\,B,M,N,P,Q, and two lengthsl;

andL,. The functionsu andv must satisfy six continuity One can readily check that errors in E¢8) and (9) are
and periodicity conditions u(+0)=u(—0), u’'(+0) indeed on the order of expfal;) and exp(-bL;), wherea
=u’(—0) and v(+0)=v(—0), and u(—Ly)=u(Ly), and b are positive constants of the order of unity. Because
u'(-Lp)=u’'(L;) andv(—Ly)=v(L;). Two more equa- the widthsLy, andL; are of the order of ¥, the errors are
tions are the excitation and deexcitation conditian®) o(e") for any n>0 and the above equations are accurate
=p(0) andu(—L;)=v(—Ly), respectively, which immedi- within any power ofe. The ESE approximation is thus exact
ately follow from our definition ofi (u,v) in Eq. (1). These in terms of the parameterand is the zero approximation in
eight equations determine two dispersionlike dependencdsrms of powers of the parametey=exp(—1/e) =0(&"). It
Li=L¢(c) andL,=Ly(c). Since the spatial period is the is important that the ESE approximation holds even for very
wavelength, these dependences determine the dispersion degenerate waves with near minimum velocity.

lation for the medium The expressiong8)—(11) are explicit and analytical and
cannot be obtained in any other existing model. Solutions of
L=L¢(c)+Lp(c). (7)  different models with a piecewise linear source look similar,

but the joining equationgsmoothness, efcare extremely

In fact, the dependence of the head witlh=L(c) repre- complex in other models and have to be solved numerically,
sented via the time period/c describes restitution proper- Which renders such models actually numerical. For example,
ties of the medium, which can be more conventionally repin the model introduced by McKed®] and studied in detail
resented by plottind.;, versusL; (usingc as a parameter by Rinzel and Kellef10] the coefficients analogous to ours
Both the dispersion and restitution curves pretocol inde-  are found by(numerically solving a set of very sophisticated
pendeniand thus characteristic properties of the medium. transcendental equations involving powers to the ratios of

The dispersion and restitution curves can be found ana©0ots of a cubic equation, which makes analytical analysis
lytically with the exponentially small error&ESE wheng is  Virtually impossible.
sufficiently small,e <\ <1 (the requiremenk <1 is nonre- Figure 2 depicts the dispersion and restitution properties
strictive). In the ESE approximation, the coefficients Of the medium and illustrates the accuracy of E@.and
M,N,A,B in Eq. (5) are simply related to the transition am- (9). Our explicit equationg8)—(11) also indicate that there

plitudesu; anduy, (Fig. 1) asA=u;, B=u,, M=1—us, can exist additiona{topologically disconnectgédow veloc-
N=1—-u,. Other constants are also readily found and welty branches of such curves, which is an unexpected feature.
obtain For the parameter values used for the plots in Fig. 2 this
corresponds to the velocities well beloe<0.037 (not
1 {[Ry(c)—8S¢(c)]+v,—us(c) shown. Despite multiple attempts neither these nor any
Lh(c)==<In (8 other points of the dispersion curve in the lower left corner

0" {[Rn(C) = Sn(C)]+vr—up(c) of the graph could be reached in our numerical simulations.

Solving numerically their linear stability equations Rinzel
Up(c) —v, +¢Sh(C)d (99  and Keller(Ref.[10]) found that the minimum speed never
ug(c)—v,+¢S(c)é’ reaches the merging point of the upper and lower branches of

the dispersion curve, the stably propagating waves cease to
where §=¢/c, the transitional amplitudes; and u, (see exist at a higher speed: only a portion of the upper branch of
Fig. 1) are simple explicit functions of given in Ref.[8], the dispersion curve represents linearly stable solutions. The
Si=u;(c)/[ki(c)— 81, Sh=up(c)/[ki(c)— 5] and marginal(critical) velocity ¢, can in principle be found via

1
Lf(c)ZSIn
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FIG. 3. Phase portraits of the periodic wave trains on the) plane for FIG. 4. Phase portraits of two solitary waves and the nuliclines on the
differentc. The portions corresponding to heads of thavaves are shown (u,v) plane(the corresponding wave configurations are shown in Fig. 1 of
by solid lines, dashed lines corresponding to the region whete. The Ref.[8]).

N-shaped bold line is the nullclingu,v)=0, and the straight solid line

={u+v, is the nulicline for Eq(2). Figure 3 displays phase portraits on they) plane for pe-
riodic waves(5) and (6) at four different points of the dis-

the linear stability analysis, which is fairly difficult in the persion curveL=L(c). The curve corresponding t=1.1

periodic casd10] particularly because the linearized prob- describes a wave with very long recoveigterpulse time

lem for perturbations is not self-adjoint and the correspondand is very close to a solitary pulse. Such curves start off the

ing eigenvalues are complex. nullcline u=0 atv~wv,. Notice that the phase trajectories

The existence of explicit analytical solutions for our for lower propagation velocities never follow the nullcline
model allows us to suggest a simplified approach and formu(u,v) =0 and therefore cannot be well approximated using
late approximate stability conditions by extending those for ssingular perturbation theory. Figure 4 displays phase por-
solitary pulse to the periodic case. Each single wave of théraits of two solitary waves. The lower portions of the loops
infinite train actually propagates in incompletely recoveredsituated to the left of the bold diagonal are straight lines and
medium with the slow control variabke always staying far ~correspond to the foot region. Since in the solitary pulse
away from its equilibrium value, . Our idea is to approxi- case [8] v(§)=v,+[{d/(5—ky)]uexpk§) and u(¢)
mate a single pulse of the infinite wave train in such an=usexpk;£) the equation of such a straight line is=v,
incompletely recovered nonuniform medium by a solitary +uZé/(6—k;) with the intercept being,. The maximum
pulse in a uniform medium with appropriately redefinedvalue of the threshold, for which a solitary pulse solution
threshold value. Then the known existeris@bility) condi-  still exists determines the critical pulse velocity,,
tions for the solitary pulse will produce the existence condi{maxviP(c)=vi¥cy), Cer=Cer(e,{,N), where viP(c) is
tions for the periodic wave train. It appears intuitively evi- given by Eqg.(17) and shown in Fig. 2 in Ref.8]]. In the
dent that the periodic solutions do exist on the upper brancperiodic case tha wave in the regiorF>0 nearé=0 can be
at large wavelengths. We therefore only need to find theapproximated by the same expression andiaves can be
marginal case corresponding to the minimum velocity ofwritten asv(&)~Q+v,+[8/(5—k,)Jusexpk; ), because
stable propagation. With this aim in view let us comparethe second term in the second line in E8§).is exponentially
phase portraits of a periodic wave train and a solitary pulsesmall while the last term changes slowly and can be “fro-
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FIG. 5. Dispersion curves for different values of the threshglénd fixed values of other parameters. Pdbglis a blow up of the lower left corner
region in paneka). The quickly decaying(subcritica) solutions are shown by dotted lines. Dash-dotted lines in p@héhdicate the solitary pulse limit.
Curves 1 through 4 correspond#p=0.2, 0.3, 0.4, and 0.44, respectively.
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< 04 Figure 5 displays a family of dispersion curves at fixed
,% \.&,¢ and four different values of, . The solid and dotted

lines represent actual calculatiofissing the above theoyy
for the velocities above,,. The (horizonta) dash-dotted
line in panel(a) corresponds to the solitary pulse limit. The
dotted-line portions of the dispersion curves correspond to
unobservable wave trains with velocities below critical. In
order to test our conclusion that the periodic waves corre-
sponding to the portions of the dispersion curve betgwdo
not propagate, we have performed a series of numerical ex-
periments to measure the decay Iengglacayin the subcriti-
cal velocity region. We computed periodic solutions of our
RD system(1) and(2) in an excitable ring with circumfer-
encelL with the initial conditions given by our analytical
FIG. 6. Decay length. 4.4y as a function of: for two values of thei-v expressiong5) and(6) for c=c,. This wave configuration
coupling constang. The value ofL ¢4y is the distance that the wave passes evolves and propagates along the ring in a nonstationary
by the instant when the points of intersection betwegf) andv(¢) merge  manner: the excited region in whiahis suprathresholdy
and the excited region in whiah(£)>v(¢) vanishes. >p) becomes smaller and smaller and finally disappears at
the instant when the wave has passed a distdngg.y.
zen” at its valueQ corresponding t@&=0. This approxima-  Figure 6 display4 geca,/L Versuse for two values off. One
tion is good because the “recovery” equation is of the firstcan see that the excitation correspondingctec,, indeed
order and hence only the value até=0 matters while disappears very quickly, before it passes 2/5 of the wave-
v'(0) is irrelevant. In the ESE approximation the constant length. All our numerical experiments using the above model
can be expressed @®=v;P(c)—v,, which yieldsuv(¢)  support the conclusion that the critical velocdty (the soli-
=vSP(C) +[£8/(5—Kky) Jusexplyd), and on the ¢,v) phase tary pulse marginal stability hypersurfadedeed accurately
plane describes the straight line, defines the end point _o_f the theoretlcal_ dlspersmn curve. It
reveals that the conditions for an excitation to decay are
practically identical for both a solitary pulse and a periodic
wave-train solution(Fig. 5). In other words, the minimal
solitary pulse velocityc,, determines an absolute lower
with interceptv;P(c). This straight line is the extrapolation boundary for the velocity of a periodic excitation wave with
of the solid lines in Fig. 3 into the region left of the diagonal any period, finite or infinite.
using a solitary pulse solution with the same initial condi- In summary, the steadily propagating wave train in our
tions até=0. As we showed in Ref8] the functionp’(c) ~ model can be explicitly written on the entire period in a
has a maximum at a critical velocitg,, [maxvh(c)} broad parameter range. The integration constants can be
_ sp . : found from a set of transcendental equations, which can be
—Ur (Ccr)]. and thgrefore determines the margmglly S'[""blecompactly solved within any power of the smallness param-
propagation velocitice,=Cc,(e,¢,\) for the periodic wave  giere The method allows us to define the restitution curve in
train in the medium under consideration. Our result appearg protocol independent way. We have found a simple “rule
to be quite intuitive and gepera] since propagation over iny¢ thumb” for the critical propagation velocity,, for peri-
completely recovered medium is always slowtte upper e excitation waves, which determines the left boundary of
branch of the dispersion curve=c(L) is monotonically o existence-stability region on the dispersion and restitu-
growing]. Thus the periodic wave train cannot exist in the jon cyrves. This is important since all nontrivial nonstation-

medium in which even a solitary pulse cannot propagate. Itig,y scenarios must evolve exclusively near this boundary.
worth emphasizing again that EG.2) and the entire conclu-

sion could be reached only due to the unique opportunity This work was supported by NASA under Grant No.
presented by the explicit expressions for all the constants iNAG5-4989, and Grant No. 96-0161 from the Whitaker
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v=0v3P(c)+u¢dl(5—ky), (12)

Egs.(5) and(6). Foundation.
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